Section 9.1 Add and Subtract Polynomials

Goal • Add and subtract polynomials.

Term	Monomial	Binomial	Trinomal	Polynomial
Parts of an	A number, variable,	A polynomial	A polynomial	A monomial OR a
expression that are	OR the product of	with two	with three terms	sum of monomials
added together.	numbers and one or	terms		
	more variables with			
Example:	WHOLE NUMBER			
3x + 4 + 6x	exponents.	Example:	Example:	Example:
		$2x^2 + 3$	$3x^2 - 2x + 5$	$5xy^{2} + 4x$
3x, 4, 6x	Example:	-5xy+z	$-2x^2 + 5x^3 - x$	$5x \\ 2x^2 - 3$
(separated by	10			$2x^2 - 3$
addition or	4x			
subtraction signs)	$5xy^2$			
:				

Degree of a Monomial - The sum of the exponents of the variables in a monomial

Leading Coefficient – The coefficient of the first term in a polynomial that is written with exponents of a variable decreasing from left to right.

Example 1: Write each polynomial so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.

a.
$$7 + 2x^4 - 4x$$

$$ax^{+}-4x+7$$

Degree 4 Leading Coefficient 2

b. $5x + 13 + 8x^3$.

Degree 3 Leading Coefficient 8

Example 2: Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of terms. Otherwise, tell why it is not a polynomial.

Expression	Polynomial? If so, is it a monomial, binomial, or trinomial?	Classify by degree
6	monomial	0
$4a^2b^3 + 6ab^6$	binomial	epinophina
$2w^3 + 4^w$	no	
$-2x^6$	monomial	(0
$-h^3+4h^2$	binomial	3
$9 - 5x^2 + 3x$	trinomal	2

Section 9.1 Add and Subtract Polynomials

Checkpoint:

1. Write each polynomial in standard form. Identify the degree and leading coefficient of each polynomial.

a.
$$4y^4 - 7y^5 + 2y$$

b.
$$9x^6y^2 - 4xy + 3x + 7$$

2. Tell whether the expression is a polynomial. If it is, find its degree and classify it by the number of terms. Otherwise, tell why it is not a polynomial.

a.
$$4x - x^7 + 5x^3$$

b.
$$v^3 + v^{-2} + 2v$$

Adding/Subtracting Polynomials

Vertical Format → Align like terms in vertical columns Horizontal Format → Group like terms and simplify

(don't odd exponents!) Example 3: Add polynomials

a.
$$(-2x^2 + 3x - x^3) + (3x^2 + x^3 - 12)$$

$$-x^{3}-2x^{2}+3x$$

+ $+x^{3}+3x^{2}+0$ -12

$$0 | 1\chi^2 + 3\chi - 12$$

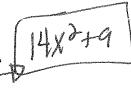
Example 4: Subtract polynomials

a.
$$(4x^2 + 5) - (3x^2 + 2x - 8)$$

$$4x^{2}+0+5$$

Checkpoint: Add or subtract each polynomial. 3. $(3x^2 + x - 6) + (x^2 + 4x + 10)$

3.
$$(3x^2 + x - 6) + (x^2 + 4x + 10)$$


b.
$$(2x^2 + 4x^3 - 4) + (x - 3x^2 + x^3)$$

$$4x^3 + 2x^2 + 0 - 4$$

 $+x^3 - 3x^2 + x + 0$

b.
$$(2x^2-7)-(3x^2-9x+1)$$

4.
$$(12 + 6x^2 - 4x) - (-8x^2 - 4x + 3)$$

$$--8x^2-4x+3$$

